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Abstract
We consider a cluster growth model on a square lattice that is in the compact
directed percolation universality class. The model is exactly solvable as regards
its static cluster properties, and expressions are given for various quantities of
interest, such as the mean perimeter length and the mean cluster size. The
results also provide new information on area–perimeter generating functions
for a class of self-avoiding polygons on square lattices.

PACS numbers: 02.50.−r, 05.50.+q, 64.60.Cn

1. Introduction

Stochastic growth models on lattices have been widely studied, both with regard to their static
properties (i.e. characterizing clusters) and also their dynamic properties. Epidemics, forest
fires, avalanches and aggregates have all been studied on this basis (see, e.g., [1,2]). Two well
known examples are the Eden model [1, 2], which has played an important role in modelling
certain biological processes and interface roughening, and the Leath model [1–3], which has
greatly aided our understanding of isotropic percolation. However, although much is known
about the properties of such models, most have not yet been solved exactly except in one spatial
dimension.

In this paper we consider a different stochastic growth model on a square lattice which
generates ‘spherical’ clusters in discrete time. The clusters are compact (similar to the Eden
model, but in a stricter sense) and the growth process can terminate (similar to the Leath
model). As regards its static properties, the model is exactly solvable and belongs to the
compact directed percolation (CDP) universality class (in (1 + 1) dimensions) [4,5]. Directed
percolation models in general are widely studied as examples of systems with an absorbing
state (i.e. non-equilibrium systems) that exhibit a phase transition [6]. We are interested in
characterizing the clusters according to their perimeter and area.
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Figure 1. A cluster generated in six time steps by the CCG model. The dotted lines link sites
on a shell. The full circles are occupied sites and the open circles are the unoccupied sites that
contribute a factor q to the diagram weighting. The full curve is the perimeter polygon. For this
cluster, � = 32, s = 24 and the weighting is p14q23.

Besides its virtue of being exactly solvable, the model studied is also closely related to
various combinatorial enumeration problems (in particular, classes of self-avoiding polygons).
The problem of enumerating all self-avoiding polygons has remained unsolved [7], although
much is known from series expansions (see, e.g., [8]). For so-called staircase polygons,
the area–perimeter generating functions have been determined exactly [7, 9], and the work
presented here provides a different perspective on these results. In addition, we can provide
exact generating functions for a different class of self-avoiding polygons. With an eye to the
future, it has been noted that the area–perimeter generating function for staircase polygons
obeys a non-linear functional equation [10], from which the properties of various scaling
functions can be derived [11]. This is also found to be true of other restricted classes of
self-avoiding polygons [10, 12]. Very recent developments [13, 14] suggest that this concept
may be of much wider applicability and may represent a profound new approach to studying
longstanding problems encountered in other lattice models. In this context, the present work
is also of some interest, in that an equivalent functional structure may well exist, but has yet
to be identified.

2. The compact cluster growth model

The compact cluster growth (CCG) model is specified as follows (see figure 1). Sites on
a square lattice are labelled by integer pairs (x, y). At time t = 0, the origin is occupied
with probability 1 and all other sites are empty. At discrete time t , the occupancy of every
site in the shell whose chemical distance from the origin is |x| + |y| = t is determined in
parallel, depending upon the occupancy of the nearest-neighbour sites in the preceding shell,
whose chemical distance from the origin is t − 1. If x �= 0 and y �= 0 then there are two
such neighbouring sites and the conditional probability rules are as follows: P [1|0, 0] = 0,
P [1|1, 0] = P [1|0, 1] = p and P [1|1, 1] = 1, where p thresholds a random number uniformly
chosen on the interval [0, 1], and a site value of 1 (0) corresponds to occupied (unoccupied).
For the four sites on the axes which have either x = 0 or y = 0 there is only one neighbouring
site on the preceding shell. For these sites the rule is simply: P [1|0] = 0 and P [1|1] = p. In
this way, the occupancy of successive shells is updated in time and the clusters so generated
are fully compact (ensured by the condition P [1|1, 1] = 1). The cluster growth terminates if
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n = 3

m = 4

t

Figure 2. A typical cluster for CDP in (1 + 1) dimensions generated in 14 time steps, with m = 4
and n = 3. For this cluster, � = 32, s = 29 and the weighting is p14q16.

p < pc, and may or may not terminate if p > pc, where pc = 1/2 (see below). An example
of a finite cluster generated by this process is shown in figure 1.

Such clusters can be characterized by their perimeter length and area, and by their
probability of occurrence. The perimeter length, �, is defined to be the length of the perimeter
of the self-avoiding polygon (which is defined on the dual lattice) that bounds the compact
cluster as tightly as possible (see figure 1). The area is simply the number of occupied sites
in the cluster. The probabilistic weighting of a given cluster follows directly from the growth
rules, in which the condition P [1|1, 1] = 1 plays a prominent role. Thus, only sites that have
one occupied nearest neighbour on the preceding ‘chemical shell’ contribute a factor of p to
the cluster weighting (e.g. in figure 1 there are 14 of these). All the other occupied sites are
occupied with probability 1 (including the origin) and so contribute nothing to the weighting
(in figure 1 there are 10 of these). All empty sites that were otherwise accessible during the
cluster growth contribute a factor of q = 1 − p to the cluster weighting (e.g. in figure 1 there
are 23 of these). It turns out that there is no simple way to express the weight of a given CCG
cluster simply in terms of its perimeter length or area. Nevertheless, it is possible, through the
use of suitable generating functions, to evaluate quantities such as the mean perimeter length
and the mean cluster size.

There is a close link between the CCG model and CDP in (1 + 1) dimensions. The
latter is simple to define (the nomenclature ‘CDP’ is standard although CDP is not actually
in the directed percolation universality class [6]). Sites on a one-dimensional lattice (si(t))
are updated in parallel on the basis of defined conditional transition probabilities P [si(t +
1)|si−1(t), si+1(t)], namely P [1|0, 0] = 0, P [1|1, 0] = P [1|0, 1] = p and P [1|1, 1] = 1,
where p thresholds a random number uniformly chosen on [0, 1]. The usual initial condition
is that a single site (the origin) is occupied. Representing successive states of the lattice {si(t)}
on a space–time diagram generates two-dimensional CDP clusters on a (diagonal) square lattice
which are compact (see figure 2). As first noted in [4], and developed in [5], this means that
the (finite) clusters may be placed in one-to-one correspondence with pairs of directed parallel
walks on the dual lattice which intersect only on the first and last step (see figure 2). Since
the enumeration of such walks is well understood [15–17], various quantities of interest can
be calculated exactly. For example, the critical percolation probability pc = 1/2 [4], and the
principal critical exponents are all known [5]. There have also been further exact results given
for CDP in the presence of a physical wall [18–22].
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The directed parallel walks define a perimeter polygon in the sense given above, and one
can refer to the perimeter length and area (size) of CDP clusters in the same way as for CCG
clusters. Following [5] we note that each walk consists of �/2 steps. Each ‘outward’ step of
a given walk (except the first) is associated with a factor of p, whilst each ‘inward’ step of a
given walk is associated with a factor of q (see figure 2). Further, since both walks intersect
only at the first and last steps, the number of ‘outward’ steps on one walk is equal to the number
of ‘inward’ steps on the other, and vice versa. It follows that the perimeter length, �, uniquely
determines the weighting of a given CDP cluster, i.e. p−2(pq)�/2 [5]. Evidently a similar
argument does not apply to the more complicated clusters generated by the CCG model.

The perimeter boundary of a CDP cluster is known as a ‘staircase’ polygon, since the
perimeter polygon can be represented by two directed walks (see above) and each of these
walks resembles a ‘staircase’ [7]. It will become clear (see the discussion later in the paper) that
the CCG clusters (e.g. figure 1) are closely related to staircase polygons through concatenation.
The subtle feature is that the four such staircase polygons required (one for each quadrant) are
correlated through having common sites along the axes; handling this correlation exactly is
the main theme of this paper. Since the growth of axis sites is essentially a one-dimensional
process (determined only by the state of the preceding site on the same axis), their growth
will eventually terminate. Only after such a point is reached, however, will the ‘lobes’ of the
growing clusters decouple. We note in passing that the clusters studied here are quite distinct
from the directed compact clusters (lattice animals) studied in [23, 24].

3. Area–perimeter generating functions

3.1. CDP in (1 + 1) dimensions

We begin by summarizing some well-known results for CDP clusters in (1 + 1) dimensions
which will be useful in what follows. The perimeter generating function of the bounding
staircase polygons is easily obtained from the properties of random walks [5, 15–17]:

G(y) ≡
∑

�

C�y
� = 1

2 [1 − 2y2 −
√

1 − 4y2] (1)

where y is the perimeter ‘activity’ and C� is the number of distinct clusters with perimeter
length �. The structure of (1) is simple and algebraic. Since the weight of a given CDP cluster
is simply p−2(pq)�/2 (see the previous section), the probability that a given cluster is finite
follows immediately:

Q ≡ p−2
∑

�

C�(pq)�/2 = p−2G
(√

pq
)
. (2)

An important feature of (1) is that
√

1 − 4pq = |1 − 2p|. Thus for p < pc we have Q< = 1
and for p > pc we have Q> = (q/p)2, where pc = 1/2. The probability of generating an
infinite cluster P∞ = 1 − Q, and so for p > pc we have P∞ = (2p − 1)/p2 with critical
exponent β = 1. The mean perimeter length for p < pc is given by

L< = p−2

(
y

∂G

∂y

)∣∣∣∣
y=√

pq

= 4

(
1 − p

1 − 2p

)
(3)

and this diverges as p → pc with critical exponent τ = 1. For p > pc, the corresponding
quantity of interest is the mean perimeter length given that the clusters are finite, i.e.

L> = Q−1
> p−2

(
y

∂G

∂y

)∣∣∣∣
y=√

pq

= 4

(
1 − q

1 − 2q

)
. (4)
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Examination of (3) and (4) reveals a duality under the transformation p ⇔ q, a property that
was explained in [5]. It is of interest here since a similar duality in the CCG model turns out
to be missing.

To calculate the mean CDP cluster size, S, one needs information about the staircase
polygon area–perimeter generating function G(y, z) ≡ ��,sC�sy

�zs (where z is the area
‘activity’ and s is the cluster size). The function G(y, z) itself is much more difficult to
obtain than (1) [9, 10]. Further, the resulting non-algebraic expression (involving ‘q series’)
is very unwieldy; even taking the limit z → 1− to recover (1) is highly non-trivial [11].
Fortunately, to generate the moments of interest it is not necessary to evaluate G(y, z) for
all values of z. One such method was demonstrated in [5], but the most elegant derivation
follows from a result due to Prellberg and Brak [10], who showed that the generating function
G(y, z) ≡ F(y2, y2, z), where F(x, y, z) obeys a non-linear functional equation

F(x, y, z) = [F(zx, y, z) + zx][F(x, y, z) + y]. (5)

By setting z = 1 in (5) one can recover (1) immediately. Further, the mean cluster size can be
calculated from (5). For p < pc one has, after some straightforward algebra,

S< = p−2

(
∂F (x, y, z)

∂z

)∣∣∣∣x=y=pq
z=1

=
(

1 − p

1 − 2p

)2

. (6)

The critical exponent is therefore γ = 2. For p > pc one can, as above, similarly define a
mean cluster size given that the clusters are finite:

S> = Q−1
> p−2

(
∂F (x, y, z)

∂z

)∣∣∣∣x=y=pq
z=1

=
(

1 − q

1 − 2q

)2

. (7)

Again the duality structure is clear. That (6) and (7) follow from (5) is elementary, although
the link does not seem to have been written down so explicitly before.

3.2. The present model

The first step to obtaining the area–perimeter generating function for the CCG clusters depicted
in figure 1 is to obtain the area–perimeter generating function gmn(y, z) for staircase polygons
defined for given values m and n of the number of occupied sites along the two axes (see
figure 2). When suitably concatenated, one can then sum over the indices and this will keep
track of the correlations (see the later discussion). The function gmn(y, z) has a well-defined
recursive structure which is evident from the diagrammatic expansions shown in figure 3 (a
‘Temperley’ method [7, 9]), and clearly one has the symmetry gmn(y, z) = gnm(y, z). In
general one finds that

gmn = y2zn[gm−1,n + gm−1,n+1 + gm−1,n+2 + · · ·]
whereupon one can obtain the following recursion relation:

zgm+1,n = y2zn+1gm,n + gm+1,n+1 m, n � 1. (8)

We have not solved this recursion for general z, but it seems likely that one could do so using
‘q-series’ techniques similar to those used in [9, 10]. For example, one can sum over m to
derive a recursion for hn(y, z) ≡ ∑∞

m=1 gmn(y, z):

hn+2 − z(1 + y2 − y2zn+1)hn+1 + y2z2hn = 0
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g11   = y4z

g21   = y2zg11 y2zg12 y2zg13+ + +  ....

g22   = y2z2g12 y2z2g13 y2z2g14+ + + ....

:
:

:
:

:
:

Figure 3. Graphical representations illustrating the recursive structure of the area–perimeter
generating functions gmn(y, z).

and this is solved in [9, 10]. However, as mentioned above, one does not need to solve for
general z to evaluate many quantities of interest; indeed, it is easier not to do so. When z = 1,
it is straightforward to show from (8) that

gmn(y) = y4(λ−)m+n−2

λ− = 1 −
√

1 − 4y2

2

(9)

where λ− is a root of λ2 − λ + y2 = 0. In choosing this root one notes that, as the ‘activities’
y, z → 0, so gmn ∼ zmny2m+2n, i.e. the ‘ground-state’ cluster corresponds to a rectangle
of dimensions m × n. Summing (9) over m and n one obtains for all staircase polygons
G(y) = (λ−)2, which agrees with (1). Further, (9) plays an important role in determining
the probability of generating a finite cluster, and the mean cluster perimeter length, for the
compact clusters illustrated in figure 1 (see the next section).

To calculate the mean cluster size one needs additional information about the derivative
of gmn with respect to z, evaluated at z = 1. This is harder to obtain. Differentiating (8) gives

fm+1,n − y2fmn − fm+1,n+1 = (n + 1)y6(λ−)m+n−2 − y4(λ−)m+n−1 (10)

where fmn ≡ ∂gmn/∂z|z=1. In finding a solution of this inhomogeneous recursion one uses
the fact that, as y → 0, fmn ∼ mny2m+2n (see above). The solution of (10) is

fmn =
[

y4

2(1 − 2λ−)
(λ−(1 − λ−)(m2 + n2) − λ−(m + n) + 2(1 − λ−)2mn)

+
y4λ2

−
2(1 − 2λ−)2

(m + n − 2)

]
(λ−)m+n−2. (11)

In the next section we show how to calculate the mean cluster size using this result.
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m

n

u

v

Figure 4. Showing how the cluster in figure 1 arises through the concatenation of four overlapping
staircase polygons (one of which is emphasized in bold to aid the eye in following the appropriate
lines). The origin site is common to all four polygons; all other axis sites are common to two
polygons.

The area–perimeter generating function, G(y, z), for CCG clusters of the type depicted in
figure 1 can now be constructed as follows. Every cluster can be thought of as arising from four
overlapping staircase polygons that share common sites along the axes (see, e.g., figure 4).
Clearly then G(y, z) will be derived from a product of the form gmn × gnu × guv × gvm,
suitably corrected for ‘over-counting’ (thus figure 4 illustrates one of the clusters ‘generated’
by the product g22g22g23g32). By ‘over-counting’ we mean that, as things stand, the product
gmngnuguvgvm counts the origin four times, counts all other sites on the axes twice, and counts
four unit sections of the CCG cluster perimeter twice. Further, it also counts other sections
of the perimeter of the individual staircase polygons that are now internal to the CCG cluster
polygon and therefore not to be included (see figure 4). This ‘over-counting’ has to be factored
out. A little thought convinces one (the formal proof is omitted here but can be demonstrated
on the basis of a term-by-term diagrammatic expansion) that

G(y, z) = z

y4

∞∑
m,n,u,v=1

gmngnuguvgvm

y2m+2n+2u+2vzm+n+u+v
. (12)

The perimeter generating function G(y) is obtained by setting z = 1 in (12). Using (9), the
summations in (12) are straightforward to carry out, with the result that

G(y) = 16y12

(1 − 4y2)2(1 −
√

1 − 4y2)4
. (13)

The first few terms in the expansion of (13) are G(y) = y4+4y6+18y8+80y10+351y12+O(y14),
which agrees with direct enumeration of the lowest-order clusters. For convenience, and for
comparison with later results, the basic clusters (excluding rotations) of perimeter length
� � 10 are shown in figure 5. Clusters are defined with respect to a given origin; thus, for
example, the three basic six-site clusters depicted in figure 5 are distinct even though they are
translations of each other.
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20p3q8

40p3q9

20p3q10

q4 4pq6

8p2q7 10p2q8

Figure 5. Lowest-order cluster diagrams with perimeter length � � 10 (excluding rotations) and
their associated weights (including rotations). The full circles indicate the origin site for each
cluster. The diagrams are complete to O(p3) and O(q8) for p, q small respectively.

4. Evaluation of various moments

The probabilistic weighting of CCG clusters is more complicated than for CDP (see the
discussion in section 2), but can be handled as follows. We consider first the probability
of generating a finite cluster, Q. To begin, one defines a new variable y ′ through the relation
y ≡ √

pqy ′. Next, one makes this substitution in (12) and sets z = 1. On its own this is
not sufficient to get the weighting of each cluster correct. An additional factor of the form
p−2qm+n+u+v−2 must be introduced into the summand of (12) (i.e. before the summations are
carried out) to properly account for the weighting of the common axis sites (recall the discussion
in the previous section). Again, proof that this procedure is correct comes from examining a
term-by-term diagrammatic expansion. Thus we obtain from (12) and (9) a new generating
function:

�(p, q, y ′) = p4q4y ′12
∞∑

m,n,u,v=1

λ2m+2n+2u+2v−8
−

y ′2m+2n+2u+2vpm+n+u+v
.

The various geometric series are easy to evaluate, the result being

�(p, q, y ′) =
(

pqy ′3

y ′2p − λ2−

)4

. (14)

The significance of this generating function is as follows. Its expansion as a power series in
y ′ enumerates the probability of generating clusters of perimeter �. The first few terms are

�(p, q, y ′) = q4y ′4 + 4pq6y ′6 + 8p2q7y ′8 + 10p2q8y ′8

+ 20p3q8y ′10 + 40p3q9y ′10 + 20p3q10y ′10 + · · ·
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and these correspond exactly to the diagrams depicted in figure 5. A consequence of (14)
is that the weight of a cluster of perimeter � is of the form p−2p�/2qα , where α is such that
�/2+3 � α � � for � > 4 and all values occur. Thus (as stated in section 2) the perimeter length
alone is not sufficient to determine the weighting. We return to this point in the discussion
below.

Setting y ′ = 1 in (14) provides an expression for Q. For p < pc we have λ− = p and
Q< = 1. For p > pc we have λ− = q, whereupon

Q> =
(

pq

p − q2

)4

. (15)

The probability of generating an infinite cluster P∞ ≡ 1 − Q. Slightly above pc we have
P∞ ∼ 32(p − pc) which has the same critical exponent β = 1 as CDP.

From (14) one can also calculate the mean cluster perimeter length. For p < pc,

L< = ∂�

∂y ′

∣∣∣∣
y ′=1

= 4 +
8p

(1 − p)(1 − 2p)
. (16)

The divergence is governed by the CDP critical exponent τ = 1. The mean cluster perimeter
length for p > pc (given that the clusters are finite) is

L> = Q−1
>

∂�

∂y ′

∣∣∣∣
y ′=1

= 4 +
8q2

(1 − q − q2)(1 − 2q)
. (17)

It is clear from (16) and (17) that the CDP duality property under the transformation p ⇔ q

no longer holds, although the divergence ∼4|p − pc|−1 is the same on both sides of the
transition. This ‘lack of duality’ is confirmed by series expansions; for small p we have L< =
4 + 8p + 24p2 + 56p3 + O(p4), whilst for small q we have L> = 4 + 8q2 + 24q3 + 64q4 + O(q5),
both of which may be verified from the diagrams in figure 5 (weighted by Q−1). We comment
further on this below.

The remaining quantity of particular interest is the mean cluster size, S. To evaluate it,
we first introduce the factor p−2qm+n+u+v−2 into the summand of (12). Next we differentiate
(12) with respect to z, before finally setting z = 1 and y = √

pq. Proof that this procedure
is correct also comes from examining a term-by-term expansion. The result (after exploiting
various symmetries), which is valid on either side of the transition (given that the clusters are
finite), is

S = 1 +
4Q−1

p4q4

∞∑
m,n,u,v=1

(fmn − mgmn)gnuguvgvm

pm+n+u+v

∣∣∣∣y=√
pq

z=1

.

The function fmn is defined in (11). The various summations are straightforward to carry out,
although rather laborious. For p < pc one finds that

S< = 1 +
4p(1 − p − p2)

(1 − p)(1 − 2p)2
. (18)

Thus the divergence near pc is governed by the CDP exponent γ = 2. For p > pc, the mean
cluster size (given that the clusters are finite) is

S> = 1 +
4q2K(q)

(1 − q − q2)2(1 − 2q)2

K(q) = (1 − 3q + 2q2 + 2q3 − 3q4).

(19)

There does not appear to be an ‘elegant’ simplification of K(q). Clearly the duality structure
between (18) and (19) is missing, as it was forL, although nearpc the divergence∼(2|pc−p|)−2
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is the same on both sides of the transition. This lack of duality is evident in the series
expansions; for small p we have S< = 1 + 4p + 16p2 + 44p3 + O(p4), whilst for small q

we have S> = 1 + 4q2 + 12q3 + 36q4 + O(q5), both of which may be verified from the diagrams
in figure 5 (weighted by Q−1).

5. Discussion

That the CCG model can be solved exactly is due to its close link with CDP. An immediate
consequence is that the critical exponents of the two models are the same. Further, for large
clusters the four ‘lobes’ decouple and one would expect each lobe to begin to resemble more
and more an independent CDP cluster as growth continues. One can see this in the expressions
for P∞, L and S. Near pc they are all a factor of four larger in the present model than in CDP.

The principal difference between the present model and CDP in (1 + 1) dimensions is that
the cluster boundary is less restricted. This is evident in the fact that the perimeter length alone
no longer determines the cluster weightings. The perimeter polygons defined by the model
are self-avoiding and distinct from other widely studied cases, such as staircase polygons,
partition polygons and convex polygons [7]. The Eden model also generates compact clusters
with non-trivial boundaries [25], although for that model compactness is meant in the more
general sense that the cluster’s fractal dimension df = 2. In the present problem it is trivial
that df = 2. As an observation one generally expects the cluster radius of gyration RN ∼ Nν ,
where N is the cluster size and the exponent ν = 1/df [25]. In the present problem, if one
considers large clusters near pc, N ∼ S ∼ |p − pc|−2 and RN ∼ L ∼ |p − pc|−1, so that
RN ∼ N1/2 and the scaling relationship is satisfied.

The fact that the perimeter length alone is not sufficient to determine the cluster weightings
also explains the absence of the duality feature observed in CDP in (1 + 1) dimensions under
the transformation p ⇔ q. The latter relies on the fact that, in every cluster’s weighting, a
factor of q is accompanied by a factor of p. Once this feature breaks down there is no longer
any reason to expect the duality symmetry to hold exactly, although near pc it is approximately
preserved.

We have shown how to calculate various low order moments by considering area–perimeter
generating functions and their derivatives. One could, in principle, extend the calculations
to include higher-order moments, but the effort involved would be considerable. There are,
however, several other avenues that may be worth pursuing. As a technical exercise, it should be
possible to solve (8) for all values of z and explicitly write down the area–perimeter generating
function (12) in terms of ‘q series’. Rather more interesting would be to see whether the present
results could be recast in terms of simple non-linear functional equations for the generating
functions of interest (especially (12)) [10]. Finally, it is not inconceivable that the present model
might be amenable to exact treatment as regards some of its dynamic (growth) properties [5],
although this remains to be established.
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